欢迎访问趣闻百科网!
首页 >自然 >太阳
太阳

太阳

(太阳系的中心天体)
太阳(Sun)是太阳系的中心天体,占有太阳系总体质量的99.86%。[20]太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳公转,而太阳则围绕着银河系的中心公转。[67]
太阳资料
  • 中文名:太阳
  • 表面温度:约6000℃
  • 别名:白驹 金虎 赤乌 阳乌 金乌 金轮 火轮等
  • 分类:天文-天体-恒星
  • 质量:1.9891×10³⁰ kg
  • 星体概述

    太阳

    太阳是银河系的一颗普通恒星,与地球平均距离14960万千米,直径139万千米,平均密度1.409克/立方厘米,质量1.989×10^33克,表面温度约6000开,中心温度1500万开。由里向外分别为太阳核反应区、太阳对流层、太阳大气层[46]其中心区不停地进行热核反应,所产生的能量以辐射方式向宇宙空间发射。

    其中二十二亿分之一的能量经过大约8分钟辐射到地球,成为地球上光和热的主要来源。[10]恒星也有自己的生命史,它们从诞生、成长到衰老,最终走向死亡。它们大小不同,色彩各异,演化的历程也不尽相同。恒星与生命的联系不仅表现在它提供了光和热。实际上构成行星和生命物质的重原子就是在某些恒星生命结束时发生的爆发过程中创造出来的。太阳的年龄约为46亿年,它还可以继续燃烧约50亿年。[28]在其存在的最后阶段,太阳中的氦将转变成重元素,太阳的体积也将开始不断膨胀,直至将地球吞没。在经过一亿年的红巨星阶段后,太阳将突然坍缩成一颗白矮星--所有恒星存在的最后阶段。

    再经历几万亿年,它将最终完全冷却,然后慢慢地消失在黑暗里。太阳是距离地球最近的恒星,是太阳系的中心天体。[47]体积是地球的130万倍。[61]在银河系内一千多亿颗恒星中,太阳只是普通的一员,它位于银河系的对称平面附近,距离银河系中心约26000光年,在银道面以北约26光年, 它一方面绕着银心以每秒250公里的速度旋转,另一方面又相对于周围恒星以每秒19.7公里的速度朝着织女星附近方向运动。其中心区不停地进行热核反应,所产生的能量以辐射方式向宇宙空间发射。

    公转

    太阳绕银河系中心公转,绕银河系中心公转周期约2.5×10^8年。银河系中心可能有巨大黑洞,但它周围布满了恒星,所以看上去象“银盘”。[23]这些恒星都绕“银核”公转。与地球公转不同,这些恒星公转每绕一周离“银核”会更近。[3]

    别名

    日,阳,羲和,金乌,金轮等

    星体参数

    观测数据

    日地平均距离(1天为单位):1.49597870×10^11 米(1亿5千万公里)

    日地最远距离:1.5210×10^11 米

    日地最近距离:1.4710×10^11 米

    远日点与近日点距离相差500万千米

    视星等:-26.74等

    绝对星等:4.83等

    热星等:-26.82等

    绝对热星等:4.75等

    日全食

    物理数据

    158万次播放02:07

    太阳的八大事实:它正在变大变热,围绕银河系一圈需要2.7亿年

    半径:696000千米(约地球110倍)

    表面面积:大约6.09×10^12平方千米

    体积:大约1.412×10^18立方千米(地球的1300000倍)

    质量:大约1.989×10^30千克(地球的333400倍)

    密度:大约1.3g/cm3

    大约相对于地球密度:0.26

    大约相对于水的密度:1.3

    大约表面重力加速度:2.74×10^2米/秒^2(为地球表面重力加速度的27.9倍)

    大约表面温度:6000K

    中心温度:大约1500万开

    日冕层温度:5×200开

    发光度(LS):大约3.827×10^26Js-1

    轨道数据

    太阳

    太阳位于银道面之北的猎户座旋臂上,距离银河系中心约30000光年,在银道面以北约26光年,它一方面绕着银心以每秒250公里的速度旋转,周期大概是2.5亿年,另一方面又相对于周围恒星以每秒19.7公里的速度朝着织女星附近方向运动。太阳也在自转,其周期在日面赤道带约25天;两极区约为35天。

    太阳目前正在穿越银河系内部边缘猎户臂的本地泡区中的本星际云。在距离地球17光年的距离内有50颗最邻近的恒星系(最接近的一颗是红矮星,被称为比邻星,距太阳大约4.2光年),太阳的质量在这些恒星中排在第四。太阳在距离银河中心24000至26000光年的距离上绕着银河公转,从银河北极鸟瞰,太阳沿顺时针轨道运行,大约2亿2500万至2亿5000万年绕行一周。[22]由于银河系在宇宙微波背景辐射(CMB)中以550公里/秒的速度朝向长蛇座的方向运动,这两个速度合成之后,太阳相对于CMB的速度是370公里/秒,朝向巨爵座狮子座的方向运动。

    自转周期

    赤道处:约27天6小时36分钟

    纬度30°:28天4小时48分钟

    纬度60°:约30天19小时12分钟

    纬度75°:约31天19小时12分钟

    绕银河系中心公转周期约2.25×10^8年其他数据

    太阳寿命:约100亿年(现在大约46亿年)

    太阳年龄:约46亿年

    天文符号:☉

    太阳活动周期:11.04 年

    总辐射功率:3.86×10^26瓦特(焦耳/秒)

    太阳常数f=1.97卡·厘米^2·分^-1

    光谱型:G2V

    太阳表面脱离速度=618公里/秒

    地球附近太阳风的速度:450公里/秒

    太阳运动速度(方向α=18h07m,δ=+30°)=19.7公里/秒

    喷泉式太阳爆发震撼场面看似火山

    166万次播放02:40

    太阳每秒移动大约240千米,围绕银河系中心一圈需要2.5亿年

    太阳构造

    构造概述

    2745次播放03:06

    你了解太阳的结构吗?

    组成太阳的物质大多是些普通的气体,其中氢约占71.3%,氦约占27%,其它元素占2%。太阳从中心向外可分为核反应区、辐射区和对流区、太阳大气。[39]太阳的大气层,像地球的大气层一样,可按不同的高度和不同的性质分成各个圈层,即从内向外分为光球、色球和日冕三层。[68]我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000开。它是不透明的,因此我们不能直接看见太阳内部的结构。但是,天文学家根据物理理论和对太阳表面各种现象的研究,建立了太阳内部结构和物理状态的的模型。

    磁场

    10万次播放00:59

    我们习以为常的太阳,你真的了解它吗?

    太阳圈电流片延伸到太阳系外,结果是来自太阳的旋转磁场影响到星际物质中的等离子体。

    太阳是磁力活跃的恒星,它支撑一个强大、年复一年在变化的磁场,并且大约每11年环绕着太阳极大期反转它的方向太阳磁场会导致很多影响,称为太阳活动,包括在太阳表面的太阳黑子、太阳耀斑、和携带着物质穿越太阳系且不断变化的太阳风。太阳活动对地球的影响包括在高纬度的极光,和扰乱无线电通讯和电力。太阳活动被认为在太阳系的形成和演化扮演了很重要的角色,太阳因为高温的缘故,所有的物质都是气体和等离子体,这使得太阳的转速可能在赤道(大约25天)较快,而不是高纬度(在两极约为35天)太阳因纬度不同的较差自转造成它的磁场线随着时间而纠缠在一起,造成磁场圈从太阳表面喷发出来,并触发太阳形成系距性的太阳黑子和日珥(参见磁重联)。随着太阳每11年反转它本身的磁场,这种纠缠创造了太阳发电机和11年的太阳磁场活动太阳周期。[51]

    太阳磁场朝太阳本体外更远处延伸,磁化的太阳风等离子体携带着太阳的磁场进入太空,形成所谓的行星际磁场由于等离子体只能沿着磁场线移动,离开太阳的行星际磁场起初是沿着径向伸展的。因为在太阳赤道上方和下方离开太阳的磁场具有不同的极性,因此在太阳的赤道平面存在着一层薄薄的电流层,称为太阳圈电流片。太阳的自转使得远距离的磁场和电流片旋转成像是阿基米德螺旋结构,称为派克螺旋。行星际磁场的强度远比太阳的偶极性磁场强大。太阳50-400μT的磁偶极(在光球)随着距离的三次方衰减,在地球的距离上只有0.1nT。然而依据太空船的观测,在地球附近的行星际磁场是这个数值的100倍,大约是5nT。

    内部构造

    太阳

    太阳的内部主要可以分为三层:核心区、辐射层和对流层。[13]太阳的核心区域半径是太阳半径的1/4,约为整个太阳质量的一半以上。太阳核心的温度极高,达到1500万℃,压力也极大,使得由氢聚变为氦的热核反应得以发生,从而释放出极大的能量。[69]这些能量再通过辐射层和对流层中物质的传递,才得以传送到达太阳光球的底部,并通过光球向外辐射出去。太阳中心区的物质密度非常高。每立方厘米可达160克。太阳在自身强大重力吸引下,太阳中心区处于高密度、高温和高压状态。是太阳巨大能量的发源地。太阳中心区产生的能量的传递主要靠辐射形式。[14]太阳中心区之外就是辐射层,辐射层的范围是从热核中心区顶部的0.25个太阳半径向外到0.71个太阳半径,这里的温度、密度和压力都是从内向外递减。从体积来说,辐射层占整个太阳体积的绝大部分。太阳内部能量向外传播除辐射,还有对流过程。[35]即从太阳0.71个太阳半径向外到达太阳大气层的底部,这一区间叫对流层。这一层气体性质变化很大,很不稳定,形成明显的上下对流运动。这是太阳内部结构的最外层。

    52万次播放02:15

    太阳到底是固态还是液态?其实都不是,它的形态你根本想不到!

    太阳光球

    太阳光球就是我们平常所看到的太阳圆面,通常所说的太阳半径也是指光球的半径。光球层位于对流层之外,属太阳大气层中的最低层或最里层。光球的表面是气态的,其平均密度只有水的几亿分之一,但由于它的厚度达500千米,所以光球是不透明的。光球层的大气中存在着激烈的活动,用望远镜可以看到光球表面有许多密密麻麻的斑点状结构,很象一颗颗米粒,称之为米粒组织。它们极不稳定,一般持续时间仅为5-10分钟,其温度要比光球的平均温度高出300-400℃。截止到2013年认为这种米粒组织是光球下面气体的剧烈对流造成的现象。

    光球表面另一种著名的活动现象便是太阳黑子。[44]黑子是光球层上的巨大气流旋涡,大多呈现近椭圆形,在明亮的光球背景反衬下显得比较暗黑,但实际上它们的温度高达4000℃左右,倘若能把黑子单独取出,一个大黑子便可以发出相当于满月的光芒。[49]日面上黑子出现的情况不断变化,这种变化反映了太阳辐射能量的变化。太阳黑子的变化存在复杂的周期现象,平均活动周期为11.2年。[31]

    太阳色球

    太阳笑脸

    紧贴光球以上的一层大气称为色球层,平时不易被观测到,过去这一区域只是在日全食时才能被看到。[25]当月亮遮掩了光球明亮光辉的一瞬间,人们能发现日轮边缘上有一层玫瑰红的绚丽光彩,那就是色球。色球层厚约8000千米,它的化学组成与光球基本上相同,但色球层内的物质密度和压力要比光球低得多。日常生活中,离热源越远处温度越低,而太阳大气的情况却截然相反,光球顶部接近色球处的温度差不多是4300℃,到了色球顶部温度竟高达几万度,再往上,到了日冕区温度陡然升至上百万度。人们对这种反常增温现象感到疑惑不解,至今也没有找到确切的原因。[1]在色球上人们还能够看到许多腾起的火焰,这就是天文上所谓的“日珥”。日珥是迅速变化着的活动现象,一次完整的日珥过程一般为几十分钟。同时,日珥的形状也可说是千姿百态,有的如浮云烟雾,有的似飞瀑喷泉,有的好似一弯拱桥,也有的酷似团团草丛,真是不胜枚举。[11]天文学家根据形态变化规模的大小和变化速度的快慢将日珥分成宁静日珥、活动日珥和爆发日珥三大类。最为壮观的要属爆发日珥,本来宁静或活动的日珥,有时会突然“怒火冲天”,把气体物质拼命往上抛射,然后回转着返回太阳表面,形成一个环状,所以又称环状日珥。

    太阳日冕

    日冕是太阳大气的最外层。[15]日冕中的物质也是等离子体,它的密度比色球层更低,而它的温度反比色球层高,可达上百万摄氏度。在日全食时在日面周围看到放射状的非常明亮的银白色光芒即是日冕。日冕的范围在色球之上,一直延伸到好几个太阳半径的地方。日冕还会有向外膨胀运动,并使得冷电离气体粒子连续地从太阳向外流出而形成太阳风。氢约占71%,氦约占27%,其它元素占2%。[76]

    太阳从中心向外可分为核反应区、辐射区、对流层和大气层。由于太阳外层气体的透明度极差,人类能够直接观测到的是太阳大气层,从内向外分为光球、色球和日冕3层。

    光球层

    光球表面另一种著名的活动现象便是太阳黑子。黑子是光球层上的巨大气流旋涡,大多呈现近椭圆形,在明亮的光球背景反衬下显得比较暗黑,但实际上它们的温度高达4000℃左右,倘若能把黑子单独取出,一个大黑子便可以发出相当于满月的光芒。日面上黑子出现的情况不断变化,这种变化反映了太阳辐射能量的变化。太阳黑子的变化存在复杂的周期现象,平均活动周期为11.2年。

    色球层

    紧贴光球以上的一层大气称为色球层,平时不易被观测到,过去这一区域只是在日全食时才能被看到。当月亮遮掩了光球明亮光辉的一瞬间,人们能发现日轮边缘上有一层玫瑰红的绚丽光彩,那就是色球。色球层厚约8000千米,它的化学组成与光球基本上相同,但色球层内的物质密度和压力要比光球低得多。日常生活中,离热源越远处温度越低,而太阳大气的情况却截然相反,光球顶部接近色球处的温度差不多是4300℃,到了色球顶部温度竟高达几万度,再往上,到了日冕区温度陡然升至上百万度。人们对这种反常增温现象感到疑惑不解,至今也没有找到确切的原因。

    日珥

    在色球上人们还能够看到许多腾起的火焰,这就是天文上所谓的“日珥”。日珥是迅速变化着的活动现象,一次完整的日珥过程一般为几十分钟。同时,日珥的形状也可说是千姿百态,有的如浮云烟雾,有的似飞瀑喷泉,有的好似一弯拱桥,也有的酷似团团草丛,真是不胜枚举。天文学家根据形态变化规模的大小和变化速度的快慢将日珥分成宁静日珥、活动日珥和爆发日珥三大类。最为壮观的要属爆发日珥,本来宁静或活动的日珥,有时会突然"怒火冲天",把气体物质拼命往上抛射,然后回转着返回太阳表面,形成一个环状,所以又称环状日珥。

    日冕

    日冕的范围在色球之上,一直延伸到好几个太阳半径的地方。日冕里的物质更加稀薄,它还会有向外膨胀运动,并使得热电离气体粒子连续地从太阳向外流出而形成太阳风。

    太阳黑子:通过一般光学望远镜观测太阳,观测到的是光球层(太阳大气层的最里层)的活动。在光球上经常可以看到许多黑色斑点,叫太阳黑子。[16]太阳黑子在日面上的大小、多少、位置和形态等,每日都不一样。[18]太阳黑子是光球层物质剧烈运动形成的局部强磁场区域,是光球层活动的重要标志。[60]长期观测太阳黑子就会发现,有的年份黑子多,有的年份黑子少,有时甚至几天,几十天日面上都没有黑子。天文学家们早已注意到,太阳黑子从最多(或最少)的年份到下一次最多(或最少)的年份,大约相隔11年。也就是说,太阳黑子有平均11的活动周期,这也是整个太阳的活动周期。天文学家把太阳黑了最多的年份称为“太阳活动峰年”,把太阳黑子最少的年份称为“太阳活动宁静年”。[70]x星体

    星体活动

    太阳

    太阳看起来很平静,实际上无时无刻不在发生剧烈的活动。太阳由里向外分别为太阳核反应区、太阳对流层、太阳大气层。[64]其中22亿分之一的能量辐射到地球,成为地球上光和热的主要来源。[50]太阳表面和大气层中的活动现象,诸如太阳黑子、耀斑和日冕物质喷发(日珥)等,会使太阳风大大增强,造成许多地球物理现象──例如极光增多、大气电离层和地磁的变化。[2]太阳活动和太阳风的增强还会严重干扰地球上无线电通讯及航天设备的正常工作,使卫星上的精密电子仪器遭受损害,地面通讯网络、电力控制网络发生混乱,甚至可能对航天飞机空间站中宇航员的生命构成威胁。因此,监测太阳活动和太阳风的强度,适时作出“空间气象”预报,越来越显得重要。

    黑子

    4000年前古时候祖先肉眼都看到了像3条腿的乌鸦的黑子,通过一般的光学望远镜观测太阳,观测到的是光球层的活动。在光球上常常可以看到很多黑色斑点,它们叫做“太阳黑子”。[5]太阳黑子在日面上的大小、多少、位置和形态等,每天都不同。[83]太阳黑子是光球层物质剧烈运动而形成的局部强磁场区域,也是光球层活动的重要标志。长期观测太阳黑子就会发现,有的年份黑子多,有的年份黑子少,有时甚至几天,几十天日面上都没有黑子。天文学家们早就注意到,太阳黑子从最多或最少的年份到下一次最多或最少的年份,大约相隔11年。也就是说,太阳黑子有平均11年的活动周期,这也是整个太阳的活动周期。[57]天文学家把太阳黑子最多的年份称之为“太阳活动峰年”,把太阳黑子最少的年份称之为“太阳活动谷年”。[30]

    经过数世纪的研究,人类对太阳黑子的研究已经有了一定的成果。

    分为以下几点:

    1、太阳黑子是太阳表面温度相对较低而显得黑的区域。

    2、黑子会对地球的磁场和电离层产生干扰,指南针不能正确指示方向,动物迷路,无线电通讯受到严重影响或中断,直接危害飞机、轮船、人造卫星等通讯系统安全。

    太阳黑子活动的高峰期,太阳会发射大量的高能粒子流与X射线,引起地球磁暴现象,导致气候异常,地球上微生物因此大量繁殖,这就为流行疾病提供了温床。[48]同时,太阳黑子的活动,还会引起生物体物质出现电离现象,引起感冒病毒中遗传因子变异,或者发生突变性的遗传,产生强感染力的亚型流感病毒,形成流行性感冒,或者导致人体的生理发生其他复杂的生化反应,影响健康。因此,太阳黑子量达到高峰期时,人类要及早预防流行性疾病。

    有趣的是,一位瑞士天文学家发现,太阳黑子多的时候,气候干燥,农业丰收,黑子少的时候,暴雨成灾。地震工作者发现,太阳黑子数目增多的时候,地球上的地震也多。[33]植物学家发现,植物的生长也随着太阳黑子的出现而呈现11年周期的变化,黑子多长得快,黑子少长得慢。

    耀斑

    太阳耀斑是一种剧烈的太阳活动。[42]一般认为发生在色球层中,所以也叫“色球爆发”。其主要观测特征是,日面上(常在黑子群上空)突然出现迅速发展的亮斑闪耀,其寿命仅在几分钟到几十分钟之间,亮度上升迅速,下降较慢。特别是在太阳活动峰年,耀斑出现频繁且强度变强。

    别看它只是一个亮点,一旦出现,简直是一次惊天动地的大爆发。这一增亮释放的能量相当于10万至100万次强火山爆发的总能量,或相当于上百亿枚百吨级氢弹的爆炸;而一次较大的耀斑爆发,在一二十分钟内可释放10的25次幂焦耳的巨大能量。[32]

    除了日面局部突然增亮的现象外,耀斑更主要表现在从射电波段直到X射线的辐射通量的突然增强;耀斑所发射的辐射种类繁多,除可见光外,有紫外线、X射线和伽玛射线,有红外线和射电辐射,还有冲击波和高能粒子流,甚至有能量特高的宇宙射线。[12]

    耀斑对地球空间环境造成很大影响。太阳色球层中一声爆炸,地球大气层即刻出现缭绕余音。耀斑爆发时,发出大量的高能粒子到达地球轨道附近时,将会严重危及宇宙飞行器内的宇航员和仪器的安全。当耀斑辐射来到地球附近时,与大气分子发生剧烈碰撞,破坏电离层,使它失去反射无线电电波的功能。无线电通信尤其是短波通信,以及电视台、电台广播,会受到干扰甚至中断。耀斑发射的高能带电粒子流与地球高层大气作用,产生极光,并干扰地球磁场而引起磁暴。

    此外,耀斑对气象和水文等方面也有着不同程度的直接或间接影响。正因为如此,人们对耀斑爆发的探测和预报的关切程度与日俱增,正在努力揭开耀斑的奥秘。

    光斑

    太阳喷射出的一个离子环

    太阳光球层上比周围更明亮的斑状组织。用天文望远镜对它观测时,常常可以发现:在光球层的表面有的明亮有的深暗。这种明暗斑点是由于这里的温度高低不同而形成的,比较深暗的斑点叫做“太阳黑子”,比较明亮的斑点叫做“光斑”。光斑常在太阳表面的边缘“表演”,却很少在太阳表面的中心区露面。因为太阳表面中心区的辐射属于光球层的较深气层,而边缘的光主要来源光球层较高部位,所以,光斑比太阳表面高些,可以算得上是光球层上的“高原”。光斑也是太阳上一种强烈风暴,天文学家把它戏称为“高原风暴”。不过,与乌云翻滚,大雨滂沱,狂风卷地百草折的地面风暴相比,“高原风暴”的性格要温和得多。光斑的亮度只比宁静光球层略强一些,一般只大10%;温度比宁静光球层高300℃。许多光斑与太阳黑子还结下不解之缘,常常环绕在太阳黑子周围“表演”。少部分光斑与太阳黑子无关,活跃在70°高纬区域,面积比较小,光斑平均寿命约为15天,较大的光斑寿命可达三个月。光斑不仅出现在光球层上,色球层上也有它活动的场所。当它在色球层上“表演”时,活动的位置与在光球层上露面时大致吻合。不过,出现在色球层上的不叫“光斑”,而叫“谱斑”。实际上,光斑与谱斑是同一个整体,只是因为它们的“住所”高度不同而已,这就好比是一幢楼房,光斑住在楼下,谱斑住在楼上。

    米粒组织

    米粒组织是太阳光球层上的一种日面结构。呈多角形小颗粒形状,得用天文望远镜才能观测到。米粒组织的温度比米粒间区域的温度约高300℃,因此,显得比较明亮易见。虽说它们是小颗粒,实际的直径也有1000公里-2000公里。

    明亮的米粒组织很可能是从对流层上升到光球的热气团,不随时间变化且均匀分布,且呈现激烈的起伏运动。[26]米粒组织上升到一定的高度时,很快就会变冷,并马上沿着上升热气流之间的空隙处下降;寿命也非常短暂,来去匆匆,从产生到消失,几乎比地球大气层中的云消烟散还要快,平均寿命只有几分钟,此外,发现的超米粒组织,其尺度达3万公里左右,寿命约为20小时。

    有趣的是,在老的米粒组织消失的同时,新的米粒组织又在原来位置上很快地出现,这种连续现象就像我们日常所见到的沸腾米粥上不断地上下翻腾的热气泡。

    太阳风

    太阳风是一种连续存在,来自太阳并以200-800km/s的速度运动的等离子体流这种物质虽然与地球上的空气不同,不是由气体的分子组成,而是由更简单的比原子还小一个层次的基本粒子——质子和电子等组成,但它们流动时所产生的效应与空气流动十分相似,所以称它为太阳风。

    当然,太阳风的密度与地球上的风的密度相比,是非常非常稀薄而微不足道的,一般情况下,在地球附近的行星际空间中,每立方厘米有几个到几十个粒子。而地球上风的密度则为每立方厘米有2687亿亿个分子。太阳风虽然十分稀薄,但它刮起来的猛烈劲却远远胜过地球上的风。在地球上,12级台风的风速是每秒32.5米以上而太阳风的风速,在地球附近却经常保持在每秒350-450千米,是地球风速的上万倍,最猛烈时可达每秒800千米以上。[19]

    太阳风从太阳大气最外层的日冕,向空间持续抛射出来的物质粒子流。这种粒子流是从冕洞中喷射出来的,其主要成分是氢粒子和氦粒子。太阳风有两种:一种持续不断地辐射出来,速度较小,粒子含量也较少,被称为“持续太阳风”;另一种是在太阳活动时辐射出来,速度较大,粒子含量也较多,这种太阳风被称为“扰动太阳风”。扰动太阳风对地球的影响很大,当它抵达地球时,往往引起很大的磁暴与强烈的极光,同时也产生电离层骚扰。[45]

    冕洞

    冕洞的分布区域可达太阳表面多数地区,尤其是在太阳的两极地区,科学家已经发现冕洞内部存在磁场线的闭合和开放,如果磁场线突然打开或者闭合,那么太阳表面就会出现较大范围的冕洞覆盖现象,其分布区域远大于两极地区,冕洞形成时可携带大量的炙热等离子体,磁场线开放的区域可以看到冕洞的一些细节上变化,比如冕洞周围出现类似浪花状的结构等。

    事实上,冕洞分布在日冕物质中密度较低的空间,而且温度极高,可达到数百万度。

    太阳动力学天文台目前正在监视太阳表面的异常变化,太阳正处于为期11年的活动周期高峰时段,未来我们还将看到强烈的太阳耀斑以及日冕物质抛射等现象。

    这些太阳活动的背后都有磁场因素的介入,对太阳活动的判断似乎较为困难。科学家还发现如果冕洞发生的区域分布在太阳表面的高纬度地区,那么可形成速度较快的太阳风。

    太阳光

    阳光是地球能量的主要来源。太阳常数是在距离太阳1天文单位的位置(也就是在或接近地球),直接暴露在阳光下的每单位面积接收到的能量,其值约相当于1,368W/m**3(瓦每平方米)。[6]经过大气层的吸收后,抵达地球表面的阳光已经衰减——在大气清澈且太阳接近天顶的条件下也只有约1,000W/m**3。

    有许多种天然的合成过程可以利用太阳能-光合作用是植物以化学的方式从阳光中撷取能量(氧的释出和碳化合物的减少),直接加热或使用太阳电池转换成电的仪器被使用在太阳能发电的设备上,或进行其他的工作;有时也会使用集光式太阳能(也就是凝聚阳光)。[63]储存在原油和其它化石燃料中的能量是来自遥远的过去经由光合作用转换的太阳能。

    对流层

    太阳的外层,从它的表面向下至大约200,000公里(或是70%的太阳半径),太阳的等离子体已经不够稠密或不够热不再能经由传导作用有效的将内部的热向外传送;换言之,它已经不够透明了。结果是,当热柱携带热物质前往表面(光球)产生了热对流。一旦这些物质在表面变冷,它会向下切入对流带的底部,再从辐射带的顶部获得更多的热量在可见的太阳表面,温度已经降至5700K,而且密度也只有0.2公克/立方米(大约是海平面密度的六千分之一)。

    在对流带的热柱形成在太阳表面上是非常重要的,像是米粒组织和超米粒组织。在对流带的湍流会在太阳内部的外围部分造成“小尺度”的发电机,这会在太阳表面的各处产生磁南极和磁北极。太阳的热柱是贝纳得穴流因此往往像六角型的棱镜

    太阳的未来

    太阳上绝大多数的氢正逐渐燃烧转变为氦,可以说太阳正处于最稳定的主序星阶段。[9]对太阳这样质量的恒星而言,主序星阶段约可持续110亿年。恒星由于放出光而慢慢地在收缩,而在收缩过程中,中心部分的密度就会增加,压力也会升高,使得氢会燃烧得更厉害,这样一来温度就会升高,太阳的亮度也会逐渐增强。太阳自从45亿年前进入主序星阶段到如今,太阳光的亮度增强了30%,预计今后还会继续增强,使地球温度不断升高。[73]

    65亿年后,当太阳的主序星阶段结束时,预计太阳光的亮度将是如今的2.2倍,而地球的平均温度要比如今高60℃左右。届时就算地球上仍有海水,恐怕也快被蒸发光了。[84]若仅从平均温度来看,火星反而会是最适宜人类居住的星球。在主序星阶段,因恒星自身引力而造成收缩的这股向内的力和因燃烧而引起的向外的力会互相牵制而达到平衡。但在65亿年后,太阳中心部分的氢会燃尽,最后只剩下其周围的球壳状部分有氢燃烧。在球壳内不再燃烧的区域,由于抵消引力的向外的力减弱而开始急速收缩,此时太阳会越来越亮,球壳外侧部分因受到影响而导致温度升高并开始膨胀,这便是另一个阶段--红巨星阶段的开始。[62]红巨星阶段会持续数亿年,其间太阳的亮度会达到如今的2000倍,木星和土星周围的温度也会升高,木星冰卫星以及作为土星特征的环都会被蒸发得无影无踪,最后,太阳的外层部分甚至会膨胀到如今的地球轨道附近。

    另一方面,从外层部分会不断放出气体,最终太阳的质量会减至主序星阶段的60%。因太阳引力减弱之故,行星开始远离太阳。当太阳质量减至原来的60%时,行星和太阳的距离要比现在扩大70%。这样一来,虽然水星和金星被吞没的可能性极大,但地球在太阳外层部分到达之前应该会拉大距离而存活下来,火星和木星型行星(木星,土星,天王星海王星)也会存活下来。

    像太阳这般质量的星球,在其密度已变得非常高的中心部分只会收缩到一定程度,也就是温度只会升高到某种程度,中心部分的火会渐渐消失。太阳逐渐失去光芒,膨胀的外层部分将收缩,冷却成致密的白矮星。[82]通过红巨星时代考验而存留下来的行星将会继续围绕太阳运行,所有一切都将被冻结,最后太阳系迎接的将会是寂静状态的结束。[7]

    若太阳这种恒星变为白矮星,每秒自转一周。密度至少为1.41*10^11kg/m^3。

    辐射光度

    辐射

    到达地球大气上界的太阳辐射能量称为天文太阳辐射量。在地球位于日地平均距离处时,地球大气上界垂直于太阳光线的单位面积在单位时间内所受到的太阳辐射的全谱总能量,称为太阳常数。[66]太阳常数的常用单位为瓦/米2。因观测方法和技术不同,得到的太阳常数值不同。世界气象组织WMO)1981年公布的太阳常数值是1368瓦/米2。地球大气上界的太阳辐射光谱的99%以上在波长 0.15~4.0微米之间。大约50%的太阳辐射能量在可见光谱区(波长0.4~0.76微米),7%在紫外光谱区(波长0.76微米),最大能量在波长 0.475微米处。由于太阳辐射波长较地面和大气辐射波长(约3~120微米)小得多,所以通常又称太阳辐射为短波辐射,称地面和大气辐射为长波辐射。太阳活动和日地距离的变化等会引起地球大气上界太阳辐射能量的变化。

    光度

    5.8万次播放02:19

    太阳内部知识你知道多少?太阳到底有多热,科学家给出了答案!

    太阳光度为383亿亿亿瓦,绝对星等为4.8,他是一颗黄色G2型矮星,有效温度等于开氏5800度。太阳与在轨道上绕它公转的地球的平均距离为149597870km(499.005光秒或1天文单位)。按质量计,它的物质构成是71%的氢、26%的氦和少量重元素。太阳圆面在天空的角直径为32角分,与从地球所见的月球的角直径很接近,是一个奇妙的巧合(太阳直径约为月球的400倍而离我们的距离恰是地月距离的400倍),使日食看起来特别壮观。由于太阳比其他恒星离我们近得多,其视星等达到-26.8,成为地球上看到最明亮的天体。太阳每25.4天自转一周(平均周期;赤道比高纬度自转得快),每2亿年绕银河系中心公转一周。太阳因自转而呈轻微扁平状,与完美球形相差0.001%,相当于赤道半径与极半径相差6km(地球这一差值为21km,月球为9km,木星9000km,土星5500km)。差异虽然很小,但测量这一扁平性却很重要,因为任何稍大一点的扁平程度(哪怕是0.005%)将改变太阳引力对水星轨道的影响,而使根据水星近日点进动广义相对论所做的检验成为不可信。

    生命周期

    日冕

    太阳所处的主序星阶段,通过对恒星演化及宇宙年代学模型的计算机模拟,已经历了大约45.7亿年。45.9亿年前一团氢分子云的迅速坍缩形成了一颗第三代第一星族的金牛T星,即太阳。这颗新生的恒星沿着距银河系中心260000光年的近乎圆形轨道运行。

    太阳在其主序星阶段已经到了中年期,在这个阶段它核心内部发生的恒星核合成反应将氢聚变为氦。在太阳的核心,每秒能将超过400万吨物质转化为能量,生成中微子和太阳幅射。以这个速度,太阳至今已经将大约100个地球质量的物质转化成了能量。太阳作为主序星的时间大约持续100亿年。[55]

    太阳的质量不足以爆发为超新星。[21]在50~60亿年后,太阳将转变成红巨星,当其核心的氢耗尽导致核心收缩及温度升高时,太阳外层将会膨胀。当其核心温度升高到100000000K时,将发生氦的聚变而产生碳,从而进入渐近巨星分支。[4]

    红巨星阶段之后,由热产生的强烈脉动会抛掉太阳的外壳,形成行星状星云。失去外壳后剩下的只有极为炽热的恒星核,它将会成为白矮星,在漫长的时间中慢慢冷却和暗淡下去。

    这就是中低质量恒星的典型演化过程。

    产生能量

    太阳

    作为一颗恒星太阳,其总体外观性质是,光度为383亿亿亿瓦,绝对星等为4.8,他是一颗黄色G2型矮星。按质量计,它的物质构成是71%的氢、26%的氦和少量重元素。它们都是通过核聚变来释放能量的,根据理论太阳最后核聚变反应产生的物质是铁和铜等金属。太阳圆面在天空的角直径为32角分,与从地球所见的月球的角直径很接近,是一个奇妙的巧合(太阳直径约为月球的400倍而离我们的距离恰是地月距离的400倍),使日食看起来特别壮观。由于太阳比其他恒星离我们近得多,其视星等达到-26.8,成为地球上看到最明亮的天体。太阳每25.4天自转一周(平均周期;赤道比高纬度自转得快),每2亿年绕银河系中心公转一周。太阳因自转而呈轻微扁平状,与完美球形相差0.001%,相当于赤道半径与极半径相差6km(地球这一差值为21km,月球为9km,木星9000km,土星5500km)。差异虽然很小,但测量这一扁平性却很重要,因为任何稍大一点的扁平程度(哪怕是0.005%)将改变太阳引力对水星轨道的影响,而使根据水星近日点进动对广义相对论所做的检验成为不可信。

    太阳风

    太阳风是一种连续存在,来自太阳并以200-800km/s的速度运动的等离子体流。这种物质虽然与地球上的空气不同,不是由气体的分子组成,而是由更简单的比原子还小一个层次的基本粒子——质子和电子等组成,但它们流动时所产生的效应与空气流动十分相似,所以称它为太阳风。[54]

    太阳光

    到达地球大气上界的太阳辐射能量称为天文太阳辐射量。在地球位于日地平均距离处时,地球大气上界垂直于太阳光线的单位面积在单位时间内所受到的太阳辐射的全谱总能量,称为太阳常数。太阳常数的常用单位为瓦/平方米。[52]因观测方法和技术不同,得到的太阳常数值不同。世界气象组织 (WMO)1981年公布的太阳常数值是1368瓦/平方米。[56]地球大气上界的太阳辐射光谱的99%以上在波长 0.15~4.0微米之间。大约50%的太阳辐射能量在可见光谱区(波长0.4~0.76微米),7%在紫外光谱区(波长<0.4微米),43%在红外光谱区(波长>0.76微米),最大能量在波长 0.475微米处。由于太阳辐射波长较地面和大气辐射波长(约3~120微米)小得多,所以通常又称太阳辐射为短波辐射,称地面和大气辐射为长波辐射。太阳活动和日地距离的变化等会引起地球大气上界太阳辐射能量的变化。地球上除原子能和火山、地震以外,太阳能是一切能量的总源泉。

    天体卫星

    卫星是指围绕行星所运行的天体。卫星分为天然卫星和人造卫星,其中,木星的天然卫星最多。[8]在太阳系里,除水星和金星以外,其他行星都有天然卫星。[86]行星的气体和尘埃会碰撞、合并。没有组成行星的天体除了天然卫星,还有小行星、彗星等。

    火星的两颗卫星是霍尔在海军天文台发现的。[74]以往的观测没能发现它们是因为这两颗卫星异常的渺小。霍尔把外层的卫星叫做火卫二,内层的叫做火卫一

    木星

    木星是太阳系卫星较多的一颗行星,木星的卫星是按照发现的先后顺序编号的。1610年,伽利略用自制的天文望远镜观测到4颗卫星。[36]天文学家们为了纪念伽利略的这一重大发现,将这4颗卫星命名为伽利略卫星。这4颗卫星由内到外依次是依奥,欧罗拔,嘉里美,卡利斯托。它们分别被简称为木卫一木卫二木卫三木卫四,它们的表面特征很不一样。木卫一是至今在太阳系所观测到的火山活动最为频繁的激烈的天体,这一发现给天文学家们对太阳系天体研究提供了新的启示。木卫二体积比月球小,但密度和月球差不多。[71]木卫三是木星最大的一颗卫星。[72]木卫四的表面布满了密密麻麻的损石坑。

    木星的卫星形态各种各样、五花八门。最著名的土卫六上有大气,是目前发现的太阳系卫星中,唯一存在大气的天体。土星是太阳系卫星最多的一颗行星,周围有很多大大小小的卫星围绕着它旋转,就像一个家族。目前为止,一共发现了23颗。

    天王星与太阳系中的其他天体不同,天王星的卫星并不是以古代神话中的人物而命名的,而是用莎士比亚和罗马教皇作品中人物的名字命名的。天王星也有很多卫星,其中有直径470公里的很大的卫星。

    海王星是环绕太阳运行的一颗淡蓝色的行星,是典型的气体行星。海王星有8颗卫星。以前认为海王星只有2颗卫星,即海卫一海卫二。通过探测发现了6颗较小的卫星,从而海王星的卫星达到了8颗。

    卫星查龙的大小占冥王星的一半以上。冥王星与卫星查龙之间的距离仅有2万公里。冥王星的公转周期和卫星查龙的公转周期是一样的。[40]

    研究历史

    太阳

    人类对太阳的观测可以追溯到公元前2000年,在中国古代的典籍《尚书》中记载了发生在夏代的一次日食。中国古代汉字中用⊙代表太阳,表明中国很早以前就已看到了太阳黑子。《汉书·五行志》中记载了人类最早的黑子记录:“日出黄,有黑气大如钱,居日中央。[58]”公元前400年,希腊人曾经看到过太阳黑子,但在欧洲被遗忘,直到1605年伽利略通过望远镜重新发现了它。[79]

    1239年,俄罗斯的编年史中曾提到过日珥,称其为“火舌”,1842年在一次日食中重新发现了日珥。[29]1843年,Schwabe发现了太阳活动的11年周期,1851年在一次日食中拍摄到了第一张日冕的照片。1859年人们发现了太阳耀斑。

    英国物理学家牛顿使用三棱镜将太阳光分解为光谱,发现太阳光是由七种颜色的光混合而成的。英国天文学家威廉·赫歇尔在太阳光中发现了红外线。1824年,夫琅禾费发现了太阳光谱中的谱线,1868年又在太阳光谱中发现了一种新的元素,取名为氦(helium,意为太阳神),次年又发现了新的谱线,认为是另外一种元素,定名为coronium,后证明这只是普通元素的高电离态谱线。

    1908年,美国天文学家海耳发现黑子具有很强的磁场。[24]1930年发明了日冕仪,使得随时观测日冕成为可能。[27]1938年,汉斯·贝特提出了恒星内部质子-质子链反应碳氮氧循环两种核反应过程,阐明了太阳的能源机制。

    20世纪70年代以来,空间天文的迅速发展大大促进了太阳的研究。1971年,OSO-7卫星观测到了日冕物质抛射,1975年Deubner奠定了日震学的基础。[59]美国的天空实验室搭载的X射线望远镜观测了太阳的X射线辐射。1980年代SMM卫星首次在硬X射线波段对耀斑进行了成像。1990年,美国发射了尤里西斯号探测器观测太阳的极区。其他太阳观测卫星还有美国1995年发射的SOHO卫星、1998年发射的TRACE卫星、2002年发射的RHESSI卫星、2006年发射的STEREO卫星,日本1991年发射的阳光卫星(Solar-A)、2006年发射的日出卫星Solar-B)等。

    2022年10月25日,据新华社报道,记者从位于内蒙古自治区正镶白旗的中国科学院国家空间中心明安图野外科学观测研究站获悉,由中国科学院国家空间科学中心研究员颜毅华领衔的科研团队,发现一种新的可用于明安图射电频谱日像仪(MUSER)图像位置校准的方法,这种方法可在浩瀚宇宙中“定位”太阳准确位置。相关成果已于近日发表在学术期刊《天文和天体物理学研究》上。[88]

    661次播放02:58

    玛雅天文台丨关于太阳 玛雅人告诉你不了解的观测方法!

    551次播放06:11

    玛雅文明历法非常有特色,来看古代玛雅人如何观测太阳|科幻地带

    文学意象

    对于人类来说,太阳无疑是宇宙中最重要的天体。万物生长靠太阳,没有太阳,地球上就不可能有姿态万千的生命现象,当然也不会孕育出作为智能生物的人类。[17]太阳给人们以光明和温暖,它带来了日夜和季节的轮回,左右着地球冷暖的变化,为地球生命提供了各种形式的能源。[34]也正因此,太阳成为永恒的象征,在很多文学作品及歌曲中得到颂扬传唱。

    在人类历史上,太阳一直是许多人顶礼膜拜的对象。中华民族的先民把自己的祖先炎帝尊为太阳神;而在古希腊神话中,太阳神则是宙斯(万神之王)的儿子。

    有关太阳的名句:泰戈尔——如果你因失去了太阳而流泪,那么你也失去了群星。[41]

    If you shed tears when you miss the sun, you also miss the stars。

    希腊神话

    太阳神阿波罗

    太阳神阿波罗是天神宙斯和女神勒托(Leto)所生之子。[80]神后赫拉(Hera)由于妒忌宙斯和勒托的相爱,残酷地迫害勒托,致使她四处流浪。后来总算有一个浮岛德罗斯收留了勒托,她在岛上艰难地生下了日神和月神。于是赫拉就派巨蟒皮托前去杀害勒托母子,但没有成功。后来,勒托母子交了好运,赫拉不再与他们为敌,他们又回到众神行列之中。阿波罗为替母报仇,就用他那百发百中的神箭射死了给人类带来无限灾难的巨蟒皮托,为民除了害。阿波罗在杀死巨蟒后十分得意,在遇见小爱神厄洛斯(Eros)时讥讽他的小箭没有威力,于是厄洛斯就用一枝燃着恋爱火焰的箭射中了阿波罗,而用一枝能驱散爱情火花的箭射中了仙女达佛(Daphne),要令他们痛苦。达佛涅为了摆脱阿波罗的追求,就让父亲把自己变成了月桂树,不料阿波罗仍对她痴情不已,这令达佛涅十分感动。而从那以后,阿波罗就把月桂作为饰物,桂冠成了胜利与荣誉的象征。每天黎明,太阳神阿波罗都会登上太阳金车,拉着缰绳,高举神鞭,巡视大地,给人类送来光明和温暖。所以,人们把太阳看作是光明和生命的象征。

    北欧神话

    丰饶、兴旺、爱情、和平之神,美丽的仙国阿尔弗海姆的国王。一说他与巴尔德尔同为光明之神,或称太阳神。他属下的小精灵在全世界施言行善。他常骑一只长着金黄色鬃毛的野猪出外巡视。人人都享受着他恩赐的和平与幸福。他有一把宝剑,光芒四射,能腾云驾雾。他还有一只袖珍魔船,必要时可运载所有的神和他们的武器。

    中国神话

    在中国古典诗歌作品中,太阳意象不仅出现的次数多,而且涉及的内容也十分丰富。它的起源可追溯到原始的太阳崇拜,后来逐渐衍生出皇权、家庭温暖、时间短促、离情别恨等多种含义。

    后羿射日

    相传上古时期,夏代有穷国的国王是一个名叫后羿的英俊男子。那后羿不仅长得潇洒,而且文武双全,天文、地理无所不知,谋略、武艺无所不精,尤其还射得一手好箭。有穷国在后羿的英明治理下,蒸蒸日上,威震四方。人们丰衣足食,安居乐业,日出而作,日落而息,呈现一派丰盛祥和的景象。

    后羿每天处理完国事后,就带上心爱的弓箭(听说此箭乃神灵所赐),到射箭场进行练习,日复一日,年复一年,从未间断。他的箭术已到出神入化、无人能比的地步。

    日子在和平、美满中一天天过去,有穷国日趋繁荣。就在人们沉浸在幸福、满足之中时,突然,祸从天降。

    那是仲夏的一天,那天早晨和往日并无不同,可到了日出时候,东方一下子升出来十个太阳。人们看着眼前的一切,目瞪口呆。大家清楚,天上挂着十个太阳意味着什么。立时,哭喊着、祈祷声一片。人们用尽各种办法祈求上天开恩,收回多出的九颗太阳,但一切无济于事。一天又一天,田里的庄稼渐渐枯萎,河里的水慢慢干涸,老弱病残者一个接一个地倒下……

    后羿看着眼前的一切,心如刀绞,可是无计可施。他愁肠欲断,焦虑万分,日渐憔悴。一天,困倦不已的他刚搭上眼,忽梦见一白胡老人,老人指点他,将九个箭靶做成太阳形状,每天对准靶心,练上七七四十九天后,便可射落天上的太阳,并嘱咐他,此事不可外扬,只有到了第五十天才可让人知道。后羿睁开眼,惊喜不已,立刻动手做箭靶,箭靶做好后,便带上箭躲到深山里,没日没夜地练起来。到了第五十天,国王要射日的消息传出后,在死亡线上挣扎的人们精神顿时振奋起来,仿佛看到了生的希望。人们唯恐后羿的箭射不落太阳,男女老幼顶着火一般的烈日,用最短的时间,搭起一座数米高的楼台,并抬来战鼓,为后羿呐喊助威。后羿在震耳欲聋的鼓声里,一步步登上楼台,在他身后,是无数双渴求、期盼的眼睛,在他周围,是痛苦呻吟的土地,在他头顶,是炽热、张狂的太阳。他告诉自己只能成功,不许失败。尽管知道走的是一条不归路,但为了救出受苦受难的民众,他无怨无悔。

    终于到达楼顶了,后羿回首最后一次看了看他的臣民,他的王宫,然后抬起头,举起手中的箭,缓缓拉开弓。“嗖”,只听一声巨响,被击中的太阳应声坠下,随即不知去向。台下一片欢呼,呐喊声、战鼓声穿透云霄。后羿一鼓作气,连连拉弓,又射落了七颗。还剩最后两颗了,此时,他已精疲力尽,可他知道,天上只能留下一颗太阳,如果此时放弃,就意味着前功尽弃。[78]他再一次举起箭,用尽全身力气,将第九颗太阳击落后,便一头栽倒在地,再也没起来。一切恢复了原样,而勇敢、可敬的后羿却永远闭上了眼睛……

    被射中的九颗太阳,坠落到九个不同的地方。其中的一颗,掉到了黄海边上,并砸出了一个湖,这个湖后人称作射阳湖。不久,从射阳湖里流出一条河,人们把它称作射阳河

    山海经》中的神话传说

    在遥远的东南海外,有一个羲和国,国中有一个异常美丽的女子叫羲和,她每天都在甘渊中洗太阳。太阳在经过夜晚之后就会被污染,经过羲和的洗涤,那被污染了的太阳,在第二天升起的时候仍会皎洁如初。这个羲和,实际上是传说中的上古帝王帝俊的妻子,她生了十个太阳,并且让这十个太阳轮流在空中执勤,把光明与温暖送到人间。[43]这十个太阳的出发地十分荒凉偏僻,那地方有座山,山上有棵扶桑树,树高三百米,但它的叶子却像芥子一般大小。树下有个深谷叫汤谷,这是太阳洗浴的地方。[65]它们洗浴完了,就藏在树枝上擦摩身子。每天由最上边的那一个骑着鸟儿巡游天空,其他的便依次上登,准备出发。

    星体演变

    106万次播放03:08

    3分钟带你看完太阳的一生,人活着的意义到底是什么?

    31万次播放06:50

    6分钟带你看完:太阳100亿年演化史!

    2.5万次播放02:29

    如《流浪地球》所说,太阳真的会老化,发生氦闪吗?

    太阳是在大约45.7亿年前在一个坍缩的氢分子云内形成。[37]太阳形成的时间以两种方法测量:太阳目前在主序带上的年龄,使用恒星演化和太初核合成的电脑模型确认,大约就是45.7亿年。这与放射性定年法得到的太阳最古老的物质是45.67亿年非常的吻合。太阳在其主序的演化阶段已经到了中年期,在这个阶段的核聚变是在核心将氢聚变成氦。每秒中有超过400万吨的物质在太阳的核心转化成能量,产生中微子和太阳辐射。以这个速率,到目前为止,太阳大约转化了100个地球质量的物质成为能量,太阳在主序带上耗费的时间总共大约为100亿年。

    太阳的生命归宿

    太阳没有足够的质量爆发成为超新星,替代的是,在约50亿年后它将进入红巨星的阶段,氦核心为抵抗引力而收缩,同时变热;紧挨核心的氢包层因温度上升而加速聚变,结果产生的热量持续增加,传导到外层,使其向外膨胀。当核心的温度达到1亿K时,氦聚变将开始进行并燃烧生成碳。由于此时的氦核心已经相当于一个小型“白矮星”(电子简并态),热失控的氦聚变将导致氦闪,释放的巨大能量使太阳核心大幅度膨胀,解除了电子简并态,然后核心剩余的氦进行稳定的聚变。从外部看,太阳将如新星般突然增亮5~10个星等(相比于此前的“红巨星”阶段),接着体积大幅度缩小,变得比原先的红巨星暗淡得多(但仍将比现在的太阳亮),直到核心的碳逐步累积,再次进入核心收缩、外层膨胀阶段。[81]这就是渐近巨星分支阶段。

    地球的命运是不确定的,当太阳成为红巨星时,其半径大约会是现在的200倍,表面可能将膨胀至地球现在的轨道——1AU(1.5×10¹¹m)。然而,当太阳成为渐近巨星分支的恒星时,由于恒星风的作用,它大约已经流失30%的质量,所以地球的轨道会向外移动。如果只是这样,地球或许可以幸免,但新的研究认为地球可能会因为潮汐的相互作用而被太阳吞噬掉。但即使地球能逃脱被太阳焚毁的命运,地球上的水仍然都会沸腾,大部分的气体都会逃逸入太空。

    太阳(6张)

    即使太阳仍在主序带的现阶段,太阳的光度仍然在缓慢地增加(每10亿年约增加10%),表面的温度也缓缓地提升。太阳过去的光度比较暗淡,这可能是生命在10亿年前才出现在陆地上的原因。太阳的温度若依照这样的速率增加,在未来的10亿年,地球可能会变得太热,使水不再能以液态存在于地球表面,而使地球上所有的生物趋于灭绝。[38]

    继红巨星阶段之后,激烈的热脉动将导致太阳外层的气体逃逸,形成行星状星云。在外层被剥离后,唯一留存下来的就是恒星炙热的核心——白矮星,并在数十亿年中逐渐冷却和黯淡。这是低质量与中质量恒星演化的典型。

    质量体积

    13万次播放04:44

    太阳到底有多大?体积130万个地球超乎想象,但这样理解就清楚了

    太阳是一个巨大而炽热的气体星球[77]知道了日地距离,再从地球上测得太阳圆面的视角直径,从简单的三角关系就可以求出太阳的半径为69.6万千米,是地球半径的109倍。由此可以算出太阳的体积为地球的130万倍。[53]

    天文学家根据开普勒行星运动的第三定律,利用地球的质量和它环绕太阳运转的轨道半径及周期,还可以推算出太阳的质量为1.989×10³⁰千克,这个质量是地球的33万倍。并且集中了太阳系99.86%的质量。但是,即使这样一个庞然大物,在茫茫宇宙之中,却也不过只是一颗质量中等的普通恒星而已。[75]

    由太阳的体积和质量,可以计算出太阳平均密度为1.409克/厘米,约为地球平均密度的0.26倍。太阳表面的重力加速度等于273.9810米/秒,约为地球表面重力加速度的28倍,如果一个人站在太阳表面,那么他的体重将会是在地球上的20倍。太阳表面的逃逸速度约617.7公里/秒,任何一个中性粒子的速度必须大于这个值,才能脱离太阳的吸引力而跑到宇宙空间中去。

    所处位置

    太阳只是宇宙中一颗十分普通的恒星,但它却是太阳系的中心天体。太阳系中,包含我们的地球在内的八大行星、一些矮行星、彗星和其它无数的太阳系小天体,都在太阳的强大引力作用下环绕太阳运行。太阳系的疆域庞大,仅以冥王星为例,其运行轨道距离太阳就将近40个天文单位,也就是60亿千米之遥远,而实际上太阳系的范围还要数十倍于此。[85]

    南门二(比邻星所在的三合星系统)的位置观看我们的太阳时,太阳则会成为仙后座中一颗视星等为0.5等的恒星。大体来说,仙后座的外形将会从\/\/变成/\/\/,太阳将会位在仙后座ε星的尾端。

    旋转周期

    公转

    太阳绕银河系中心公转,绕银河系中心公转周期约2.5×10⁸年。银河系中心可能有巨大黑洞,但它周围布满了恒星,所以看上去象“银盘”。这些恒星都绕“银核”公转。与地球公转不同,这些恒星公转每绕一周离“银核”会更近。

    自转

    主词条:太阳自转

    太阳和其它天体一样,也在围绕自己的轴心自西向东自转,但观测和研究表明,太阳表面不同的纬度处,自转速度不一样。在赤道处,太阳自转一周需要25.4天,而在纬度40处需要27.2天,到了两极地区,自转一周则需要35天左右。这种自转方式被称为“较差自转”。

    探测历史

    59万次播放02:41

    人类第一艘太阳探测器,“触摸”太阳的时代来临了

    8374次播放05:19

    中国第一艘太阳探测器,我国“探日”时代即将来临

    时间(年)

    探测器名称

    国家

    成就

    1960-1968

    先驱者5-9号

    美国

    绕太阳运行,研究太阳风、耀斑

    1974-1976

    太阳神1-2号

    美德合作

    近距离高速掠过太阳表面,测量太阳风与磁场

    1980

    太阳极大使者

    美国

    收集了耀斑、太阳黑子和日珥发出的X射线。伽马射线、紫外辐射的资料。

    1990

    尤利西斯

    美欧合作

    在太阳极区上方的太阳风以及太阳磁场

    1991

    阳光

    日英美合作

    测量了太阳耀斑发出的X射线和伽马射线以及耀斑爆发前的状况

    展开表格

    年度最小太阳

    2022年7月4日15时11分,地球到达轨道远日点,这时人们将看到一轮“年度最小太阳”。[87]

    参考资料

    [1] 美国发射“帕克”探测器,中国科学家探秘太阳则另辟蹊径,是啥?2018-08-19T10:54:05+08:00[引用日期2022-05-24 18:36:15]

    [2] 重庆江北:走,一起去江北看星空2020-07-29T14:53:40+08:00[引用日期2022-05-24 18:36:21]

    [3] 走进太阳系——太阳2018-05-03T16:47:29+08:00[引用日期2022-05-24 18:36:31]

    [4] 《流浪地球》中科幻有真有假,这项技术仍在探索,太阳还不用担心2019-02-15T16:56:32+08:00[引用日期2022-05-24 18:37:57]

    [5] 太阳中电离气体可放大黑子磁场2020-10-12T11:31:43+08:00[引用日期2022-05-24 19:03:55]

    相关合集

    太阳系之“最”

    12个词条1.3w阅读

    太阳

    太阳系的中心天体

    水星

    太阳系的八大行星之一

    火星

    太阳系八大行星之一

    查看更多

    七政四余包含的星体

    10个词条4309阅读

    太阳

    太阳系的中心天体

    月球

    天体名称

    金星

    太阳系八大行星之一

    查看更多

    相关视频

    全部

    158万次播放02:07

    太阳的八大事实:它正在变大变热,围绕银河系一圈需要2.7亿年

    物理数据

    166万次播放02:40

    太阳每秒移动大约240千米,围绕银河系中心一圈需要2.5亿年

    轨道数据

    2745次播放03:06

    你了解太阳的结构吗?

    构造概述

    10万次播放00:59

    我们习以为常的太阳,你真的了解它吗?

    磁场

    查看更多

  • 上一篇百科:天体
  • 下一篇百科:暗星
  • 免责声明:本站部分内容来自于网络或者相关专家观点,本站发表仅供学习参考,如有侵权请联系删除邮箱:lujiutang84414@126.com。